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Analysis of Some Mixed Finite Element Methods 
for Plane Elasticity Equations 

By J. Pitkaranta and R. Stenberg 

Abstract. We analyze some mixed finite element methods, based on rectangular elements, for 
solving the two-dimensional elasticity equations. We prove error estimates for a method 
proposed by Taylor and Zienkiewicz and for some new variants of the known equilibrium 
methods. A numerical example is given demonstrating the performance of the various 
algorithms considered. 

1. Introduction. In the numerical solution of problems of continuum mechanics, 
the stresses are normally of primary interest in the elastic region. It is therefore 
natural to design the numerical algorithms so that the stresses can be obtained 
directly without first computing the displacements. Such methods can be derived 
from the dual variational formulation of the elasticity problem. The corresponding 
finite element algorithms are usually formulated as mixed methods where both the 
displacements and the stresses are first approximated, and the displacements are 
then eliminated from the discrete equations. In many cases the elimination can be 
rather effectively done using penalty/perturbation techniques or their iterative 
variants; cf. [3], [11], [12]. 

The best known finite element methods of the above type are the so-called 
equilibrium methods, first proposed by Fraejis de Veubeke [17] (cf. also [14], [16], 
[18]) and analyzed theoretically by Johnson and Mercier [9] (cf. also [8]). In these 
methods, one uses specific composite elements which allow the equilibrium condi- 
tion between the stresses and the volume load to be satisfied exactly in the case 
where the volume load is zero. 

The main drawback of the equilibrium methods proposed so far is the relatively 
high number of free parameters as compared with displacement methods of the same 
order of accuracy. For example, if the composite quadrilateral element of [17], [9] is 
used on a regular rectangular grid, one has eight degrees of freedom per each interior 
node of the grid (after the local condensation of three extra degrees of freedom per 
node, cf. [9]) and the convergence rate 0(h2) for the stresses in L2 [9]. On the other 
hand, using the displacement method with reduced biquadratic elements (cf. [6]), one 
has the same convergence rate with six parameters per node, so the displacement 
method seems superior. 

It is clear from the above example that the mixed or equilibrium methods should 
be further developed if they are desired to be competitive with displacement 
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methods. This is the motivation of the present paper. In particular, we try to find 
mixed or equilibrium methods which are simpler than those considered in [9] and 
still preserve the quadratic convergence rate of the stresses in L2. We analyze in 
detail two candidates for such methods. In the first method, called Method I below, 
the stresses are approximated by continuous piecewise bilinear functions on a 
rectangular grid, and the displacements are taken to be piecewise constant on the 
same grid. This method (which probably is the simplest possible mixed method one 
can think of) was proposed recently by Taylor and Zienkiewicz [15]. The conver- 
gence rate of this method, however, does not seem to be quadratic. We are able to 
prove, under various restrictive assumptions, that the stresses converge with the rate 
O( h3/2) if the exact solution is sufficiently smooth. That this result is actually 
optimal is confirmed numerically. 

As another alternative, called Method II below, we consider a class of algorithms 
based on the composite quadrilateral element of [17], [9]. We show that many of the 
degrees of freedom can be eliminated without affecting the convergence rate. In 
particular, we derive a method which contains only the average of four free 
parameters per node and still gives quadratic convergence rate for stresses in L2. - 

We consider only the case of a uniform rectangular mesh on a rectangular domain 
in this paper. The assumption on mesh uniformly seems essential for Method I, but 
for Method lI the results can very likely be extended to more general quadrilateral 
meshes. 

The plan of the paper is as follows. In Section 2 we state the problem and its finite 
element discretization in a general form. In Sections 3 and 4 we analyze the two 
methods, and in Section 5 we present some results of numerical computations with 
both methods. 

2. Notation and Preliminaries. Let us recall the basic problem of linear elasticity in 
two dimensions (plane stress or plane strain): given f = (fi, f2) find a symmetric 
stress tensor a = {aij), i, j = 1, 2 and a displacement (ul, u2) satisfying 

(2.1) E(u) = Xtr(a)S + [ua in 2, 

(2.1) diva+f0 in n, 

subject to the boundary conditions 

u = 0 onEF, 

a n=O onE2. 

Here 

?U= eJ(U} ?ii 2 a xj +ax; )' ' 

is the deformation tensor, 

tr(a) =a11 + a22, 

F aau, aa12 aa21 aa22 i div a l + , a + ax, 8X2 
5 

ax2j 

ac n =(an 1,Ian,2) (nlall + n2a12, n1a21 + n2a22), 

8 = {8ij}, dij 
I 

{ 
if i =j, 

0 if i-#j, i, j =l,2, 
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X and p are constants satisfying 1u > 0 and 2X + yI > 0, 02 is a bounded region in the 
plane with boundary F F 1, U F2, and n = (nl, n2) denotes the unit outward 
normal vector on F. We have assumed homogeneous boundary conditions for 
simplicity. 

We assume below that Q is a rectangle: 0 = {x- (xI x2) FR2, 0 <xi <a1, 
0 < x2 < a2). Each side of Q is assumed to be fully contained in either F, or "2, i.e., 
the boundary conditions can change only at the vertices of U. We also assume that 
F1 is nonempty. 

Introducing the spaces 

V= V(u) -[L2(Q2)]2, 

Y =Y( Q) = { T = ( TJ ) TIJ EEL2(o0), T,, =Tp, i, j=1,Z2 } 

H = H(Q) ={T EY(Q): divT E V(), T * n = O on 2}, 

the elasticity problem can be given the following variational formulation: Find 
(a, u) F H X Vsuch that 

(2.2) { a(O, T) + (u, divT) = 0, T FH, 
(diva, v) + (f, v) = 0, v F V, 

where (., ) denotes the scalar product in V and 

a(a, T) - (Xtr(a)tr(T) + PO r) dx, 

where 
2 

a * T = Ea,T1,. 
,. /= I 

Since F1 is nonempty, (2.2) has a unique solution; cf. [7]. 
Below we consider finite element methods of the form: Find (oh, Uh) F Hh X Vh 

such that 

(2.3a) a(ah, T) + (Uh,diVT) 0, T Hh, 

(2.3b) (divah, v) + (f, v) = 0, v F Vh, 

where Hh and Vh are finite element subspaces of H and V, respectively. In practice, 
Eqs. (2.3) are often solved by introducing a small perturbation parameter e > 0 and 
replacing (2.3b) by 

(2.3b') -c(uh, v) + (divah, v) + (f, V) = O, v Vh. 

If Th denotes the orthgonal projection of [L2( 0)]2 onto Vh, (2.3b') may be written as 

Uh 
I 

h(divah +f)* 

Upon substituting this into (2.3a) one obtains 

(2.4) a(ah T) + e (Qh(divah+f ),7hhdiv)==0, TFHh. 

This is a modified penalty method for approximately solving (2.1). The operator nh 

corresponds frequently to the use of "selective reduced integration", i.e., some 
low-order quadrature rule for computing the integral in the penalty term; cf. [31, [121. 
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Below we associate the spaces Vh and Hh to a uniform rectangular partitioning of 
62 defined by 

(2.5) Ch = {Kij, i = 1,. -I,ml, j= ...,m2 

where 

Kij-{ E R: (i-)hl < xl < ihl, (j - I)hl <x2 jhl) 

Here mihi = a, i= 1, 2, and h1 and h2 are associated to the mesh parameter h h 
in such a way that h1/h2 is bounded from both above and below by a positive 
constant independent of h. 

The set of nodal points in the grid induced by the partitioning Ch is denoted by 
G: 

' = Pij = (ih I, jh), i=O,... .MI, j= O... .,m2}. 

In all of the methods considered in this paper, the functions in Vh are fully 
discontinuous along the mesh lines, so that each v E Vh can be expressed in the form 

ml m2 V 

V(x) = 2 2 2 aijkijk(X), aijk E R, 
i=l j=l k=l 

where :ijk vanishes outside Kij E Ch. Similarly, the space Hh is chosen to consist of 
functions of the form 

Vp 

T(x) ap 2 kt( ap .E R, 
PeCR k= I 

where the basis function 4k E Hh vanishes in any K E eh that does not have a vertex 
at P. For this type of choice of the subspaces, the projection qrh in (2.4) can be 
computed locally in each rectangle K E Ch. It is also obvious that in (2.4) there is 
coupling only between the nodes that are vertices of the same rectangle K E (Ch. 

We shall denote by I - L,p,T and 11 * IIs,p,T' respectively, the seminorm and the norm 
of the Sobolev space [WS.P(T)]a, s and a integers, 1 s p o o. For nonintegral 
S, S > ?, 11 * Ils'p,T is defined as usual by interpolation. If p = 2, we set 11 * Ils2T = 

II s,T. The subscript Tis dropped if T = U2. 

In the analysis below we need frequently the partial integration formula 

(2.6) A diVT - vdx =|(T * n) -.vds-f re(v) dx, 
(2.6) fa-fa T T 

where n is the unit outward normal vector to aT. (2.6) is valid if T is a symmetric 
tensor such that Tij E L2(T) and div T E [L2(T)]2, and v E [H'(T)]2. We also recall 
that since , > 0 and 2X + ,u > 0, we have (cf. [71) 

(2.7) a(T, T) > CjIT12i, T E Y. 

Here and below, C denotes a positive constant which may depend on 67 and on the 
parameters X and , in (2.1) but is independent of other parameters unless indicated 
explicitly. We shall finally denote by Pk(T), T C R2, the set of polynomials in two 
variables of degree s k defined on T. 
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3. Analysis of Method I. We consider here the method proposed in [15]. Let Sh be 
the set of continuous piecewise bilinear functions on Ch and let Qh be the set of 
functions that are piecewise constant on eh. Then the method of [15] is equivalent to 
choosing the subspace Hh and Vh in (2.2) as 

Hh = H(2) n [Sh ]4, Vh = [Qh ]2. 

Obviously any T E Hh is determined uniquely by the values of Ti-r(P), P E 'T, 
P a 2. If P E 12, then (Tr. n)(P) = 0, T E Hh. 

Let (a, u) be the solution of (2.2), let 6 E Hh be the interpolant of a defined by 

a(P) = a(P), P EE 6-1 

(assuming that a is continuous) and let ui be the L2-projection of u into Vh. We need 
the following three lemmas. 

LEMMA 3.1. Assume that Fl contains two adjacent sides of S1. Then there is a constant 
C such that for all v E Vh 

p 
(diVT V) > Cllvl E 

LEMMA 3.2. For all v E Vh, 

I (div(a- 6), v) I ChK I a Ikl+ lIv IIO, k = 2, 3. O 

LEMMA 3.3. For all T Hh, 

I (u - u,diVT)l IC(h 21 U13 + h31 IU 12.oc)11T I I0. 0 

Remark. Lemma 3.1 states a weak Babuska-Brezzi-type stability estimate (cf. 
[1],[5]) for the method (2.3). Without the additional assumption on the boundary 
condition, we have only been able to prove that 

T E Ih 
J T | t 

Before proving the lemmas, let us show that they imply the following error 
estimate. 

THEOREM 3.1. Assume that F, contains two adjacent sides of U. Let (a, u) be the 
solution of (2.2) and (ah, Uh) the solution of (2.3), where the subspaces Hh and Vh are 
defined as above. Further let Ui E Vh be the L2-projection of u. Then we have the error 
estimate 

1k| - ahIIO + hluh - UIIo ? ChI"'211u117/2. ? 

PROOF. By (2.2) and (2.3) we have the identity 

(3.1) 3(h-a - u; T, v) = 6J3 ( - a5, u - u; T, v), (,v) E- q* h UhHh X Vh, 
where 

(3.2) Ji3(a, u; , v) = a(a, T) + (u,divT)- (v, diva). 

By a standard argument (cf. [1], [5]) (2.7) and Lemma 3.1 imply the existence of 
(T, v) E Hh X Vh satisfying 

(3.3a) WitI0o + IIVO S C, 

(3.3b) - a, uh u; v) l IIah - a110 + hiuh - ohIo0 
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Combining (3.3b) with (3.1), we see that 

(3.4) IIah - 110o + IlUh u I I 0 |Ia(a -a, T) I +1 (u - i,divT) I 

+I(v,div(a -))I 

Using (3.3a) and standard approximation theory, the first term on the right side of 
(3.4) is estimated as 

la(a -6, T) |? CIa - |I1oIITIIo ? C1h2 112 ? C2h211u113. 

In the second term we apply Lemma 3.3, (3.3a) and Sobolev imbedding to obtain 

(u - i, div T ) I Ch312(I u 13 + I U I2oo)IIrIIo C1h3/2IIuII712. 

Finally, interpolating in Lemma 3.2 and using (3.3a), we have 

I (diva -a, v) 11 Ch3"211a115/2 ? Clh372IIuII7/2. 

Upon combining these inequalities with (3.4), using the triangle inequality and 
recalling the estimate for IIa - 1o, the asserted estimate follows. O 

Remark. Using the triangle inequality and the standard estimate Ilu - 0llo 
Ch I u I, it follows from Theorem 3.1 that IIu -UhIIO ? Ch1Iu117/2. 0 

Remark. Without the extra assumption on the boundary condition we can only 
prove the estimate 

Ia0 - ahIIO + IIU - UhIIO ? Ch""211u117/2 

(see the remark following Lemma 3.3). 0 
Proof of Lemma 3.1. Assume first that m, ? 2 in (2.5). Then, since m2 = 

a2(h2/h )m , m2 is bounded by a constant independent of h. Thus, also dim(Hh) 
and dim(Vh) are bounded by constants independent of h. By the equivalence of 
norms in a finite-dimensional space, the assertion then follows if one can show that 

(3.5) (divT, v)-O0 Vv E Hh= v = O. 

To see that this is valid, let K C 
Ch be such that K has two sides on F,, and choose 

T E- Hh so that T is nonzero only in K. It is easy to see that one can have 
(divT, v) = 0 for all such T ony if v = 0 on K. Repeating this argument, (3.5) 
follows easily. We omit the details. 

The case m2 ? 2 can be handled as above, so let us assume that i, m 2 3. Let 

ri 0> be the largest integer such that 3 mi - 3ri S 5, i = 1, 2, and let jh be a 
coarser subdivision of 2 into rectangles Kj, v= 1,...,r, + 1, 1= 1,...,r2 + 1, 
where 

KPI = {x E RW: dl ^- I < xi < dl,, d2, u- < x2 < d2ju 

with 

d. = 
3vhi, O?V?ri, 

, v= ri + 1, i = 1,2. 

Thus, each K E j2h consists of 1, X 12 rectangles of Ch with 3 s 1', 12 ? 5. 
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For each k e Ch' we define the following finite-dimensional spaces 

U= U(k) = {TIk:T CHh,T=0 on Q\K}, 

N = {v C Vh: f div- * v dx = 0, VT -i U 

{w G V1: f W v dx = O, Vv c N}. 

Since K consists of at most 5 X 5 rectangles of Ch, we have dim(U) < 27 and 
dim(W) < 50. Therefore, using a scaling argument and the equivalence of norms in 
a finite-dimensional space, we conclude the existence of a positive constant C 
independent of K such that 

(3.6) ~ sup fki vd 
, Chr111vIlo' Vv Cz W(k). (3.6) r Kdiv C U(Ck) IIIO,'K 

Now let v C Vh be given, and write 

(3.7) v = v0 + v1, (v0) |K E W(K), (vG) IKe N(K), K e Ch- 

By (3.6), there exists for any K e jh a function Tk e U(K) such that, for some 
constant C, 

IITkI o. K Ch/IIvoIIoK f div-ik- vo dx 2 h 211VoI1K. 

Let To be defined on Q so that 

O(x) Tk(x), x C K e Ch 

Then To C Hh (since rk = 0 on aK). Moreover, lITIoII - Ch-lllvollo, and 

(div-0,v) z Jdivmo.vdx= 
JdivT- vodx>h-2IIvoII1. 

Let us assume for a while that there also exists T, e Hh satisfying 

(3.8a) JITIIlo ClIrVIIO, 

(3.8b) (diV T, v, V) 2 IVll112 

Then, setting T = o0 + 'yT, where y c (0, 1] will be chosen below, we have T C Hh 

and 

(3.9) liTIlo < C(h-211vO012 + 11V 112)1/2 

Moreover, using the inverse inequality 

lidiV TI xo <- Ch - ll Tl ll 

together with the above inequalities, we have 

(div-T, v) > h-211vo12g + y11v1I12 + y(divrT, vO) > h-2( -Cy)vIIVOI2 + yIIv1II1. 

Thus, choosing y = min{ 1, 1/2C}, we have 

(div-T, v) a C(h-211vOI12 + IIVI11). 
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Together with (3.9) this proves the assertion of the lemma, so the remaining task is 
to construct T, E Hh which satisfies (3.8). 

We begin the construction of T, by characterizing the spaces N(K). First, if K is a 
macroelement consisting of 2 X 3 = 6 rectangles of Ch one has dim(U(K)) = 6 and 
dim( VH) = 12. Hence, one expects N(K) to be six-dimensional in this case, and 
this can indeed be verified by a straightforward computation. Let v and It be such 
that K contains the rectangles K e+, p+J Ch for i = 1, 2 and j = 1, 2, 3. Then we 
may choose for the basis of N( K) the set { ( I... 6}, where the functions (k are 
defined on the subrectangles K,+ i ] +J C K as 

(3.10) OX) = (1,0), O2(x) = (0, 1), O3(X) (i-1, -j), 

44(X) = ((-1)i'j,0), 45(X) =(0,(-')"J), 

46 (X) =0 ( -j) (-')'+J I (i -)(-')'+J) I 

X E KV+I, Z+Jg i, j 2~! 1, Kp+, u+J C K. 

We omit the details of showing that if K is any macroelement consisting of 1, X 12 

rectangles of Ch, the space N(K) is always six-dimensional and is spanned by the 
functions (k defined by (3.10), provided that min{1,, 12} > 2 and max{1,, '2} > 3. 
(This can be shown by splitting K into smaller subrectangles and using a construc- 
tion similar to that given below.) In particular, this is the case for any K E j h. The 
values of the basis functions (k = (QkI, k2) on the subrectangles of K are shown in 
Figure 1 in the case where K consists of 3 X 3 subrectangles. 

k 1 2 3 

1 1 1 0 U n 2 2 2 

'k1 1 1 1 0 U ( 1 1 1 

1 1 1 0 0 U (J 0 0 

O 0 O 1 1 1 ( -1 -2 

ik2 O U 0 1 1 1 U -1 -2 
O U U 1 1 1 O -1 -2 

k 4 b b 

1 -1 1 U O O U 1 -2 

kl 0-1 1 -1 O O O 1 -1 2 

1 -1 1 0 0 U U 1 -2 

0 0 0 1 -1 1 2 -2 2 

ik2 0 0 U -1 1 -1 -1 1 -1 
0 0 0 1 -1 1 0 0 0 

FIGURE 1 
The basis of N(K) 
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Note that the first three functions represent the physical degrees of freedom in 
N(K), i.e., the rigid translations along the coordinate axes (k = 1, 2) and rotation 
(k = 3). The remaining degrees of freedom represent purely numerical "zero energy 
modes" (cf. [10] for similar modes in other mixed methods). 

It follows from the above considerations that the function v, in (3.7) can be 
written as 

r+?I r2+1 6 

Vs = " I I 2 vjuktvjuk a au k E R, 
v=I W=1 k=I 

where (Vuk = Jk(Kp ), K E Ch Consider now a given K C- jh, and let A, B, C, D 
E 9R, be nodes of the finite element grid located on the sides of K., as in Figure 2. 

B K 

C O 

FIGuRE 2 

Let T E Hh be such that T12 = 0 and T, l and T22 vanish at all nodes except at A, B, C 
and D. Then if none of these four nodes is on the boundary F, we find that 

(3.11) (divT, v,) = h2(T,r(A) + T11(B))(a_1s1 -a,,) 

+ h2(T,r(A) + 3T,,(B))(av1,,,u3 ) 

+h2(T22(A) - T22(B))(a-1,u5 + avu5 

-2(T22( A)-3T22(B))(a?-1,u6 + u6 ) 

+hl(T22(C) + T22(D))(av,,- 1,2 -avu2 

+ 2h1(T22(C) + 3T22(D))(avy3 -a-1,3) 

+h1(-T,,(C) + T11(D))(a,-1,4 + avu4) 

+2'h(T1(C) - 3T11(D))(a,-1,6 + a,,6) 

By our assumption on the boundary conditions, we may assume that F, contains the 
sides of s2 at xl = 0 and x2 = 0. Then the values of Tij at the nodes A, B, C, D are 
free parameters in Hh, and hence (3.11) holds even if some of the nodes are on the 
boundary if we set aOuk = avOk = 0. 

Let us now choose f E Hh in such a way that if A, B, C, D are nodes located on 
the boundary of some Kvy E- as in Figure 2, then 

F11(A) + f11(B) = h'(a I-/,L -avyl) 

FII(A) + 3f1l(B) = h'(a-1,,L3 - a,L3), 

22(A) - ~22(B) = h-1(av-IL5 + aVILS), 

'F22(A A- 3F22(B) = h-1(avII,,L6 + av,L6)9 

F22(C) + '22(D) = h1(av,-L,2 - avL2) 
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f22(C) + 3f22(D) = h-'(avu3 -av_,09 

-f,I(C) + F,,(D) = h '(av,,u -4 + avu4), 

f,(C) - 3,1,(D) = h-'(av Z-16 + avu6)- 

At the remaining nodes we set 0 = 0. Then f is uniquely determined and Il I1o < 

CIIvlIIl, where 

r1+ I r2+ 1 

I VI112 [ (ary a- ,k2 
v=I y=I k=2, 3 

+ E (atryk + av,u-1 k ) + 2 (av,uk - a?v_,tk)2 
k=4,6 k= 1,3 

+ (avtvk + atv I,ttk 
) 2 9 

k=-5, 6 

(aO,,k avOk 0). 

Moreover, it follows from (3.1 1) that (div , v1 ) ? CIIv112. Using the inequality 
n n 

a2 + S (a1-4? a1)2 n-2 a" 
i=2 i=l 

and noting that ri ? Ch/r, i = 1,2, we see that IIVIIIh I CIIvII0. Combining this with 
the above inequalities we see that Tr = (IIvIIIO/CIIvlllh)f satisfies (3.8) for C suffi- 
ciently large, and so the proof is complete. O 

Proof of Lemma 3.2. The proof is based on the following result which can be 
verified by direct computation; cf. also [10]. 

LEMMA 3.4. If a - [P2(K)]4, K - Ch and if a is the bilinear interpolant of a on K, 
then 

|div(a - ) dx = O. El 
'K 

Using Lemma 3.4, it follows from the Bramble-Hilbert lemma [4] that, with 6 as in 
Lemma 3.2, 

J| div(a-a )v dx 
Chklalk+l,KIIVIIo,K k = 2,3, v c Vh, K C h. 

By summing over K E Ch, the asserted estimate follows. O 
Proof of Lemma 3.3. We use the following easy-to-prove result. Note that this is 

only valid for a uniform mesh. 

LEMMA 3.5. Let T E Hh be such that T vanishes at all nodes except at a given node 

P 9 T. Denote by T the support of T, let u E [L2(T)]2 and let u be the L2-projection 

of u into the subspace V1hT* Then 

f (u - ui) - div Tdx = 0, 

if either (a) P is an interior point of a and u E [P2(T)]2 or (b) P is a boundary point 
but not a vertex of Q and u - [P1(T)]2. 0 
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Now let ui be as in Lemma 3.3, let P E DT be a node interior to S2 and let T satisfy 
the assumptions of Lemma 3.5. Then Lemma 3.5 and the Bramble-Hilbert lemma [4] 
imply that 

(3.12) f(u - i4)divTdx Ch 2IUI3TIITIIO.T 

If P is a boundary node but not a vertex of S2, we have by the same argument 

(3.13) f(u - iu) divTdt - Ch2U 12cTIIT.|o T 

Finally if P is a vertex of 2, we have three possibilities: 
(i) The neighborhood of P is contained in F2. In this case the boundary conditions 

imply that T(P) = 0 for all T E Hh. 

(ii) The neighborhood of P is contained in F,. In this case we have u = 0 on the 
two sides meeting at P, so by Taylor expansion 

Iu(x)I? Ch2 IUI2,T, x E T. 
Using this we have 

f (U - U) * diVrTdx CIIUIIXTIIrIIIT? C2h |U 12TII T II TI 

so (3.13) is valid also in this case. 
(iii) The boundary condition changes at P. Assume, for example, that P = (0, 0) 

and that the sides at xi = 0 are contained in Fi, i = 1,2. If u C [W2'c(2)]2, it 
follows from (2.1) and from the boundary conditions that u(P) = 0, aUi(P)/ax2 = 0, 

1, 2 and aU2(P)/ax1 = 0. Therefore, u admits the Taylor expansion 

u(x) = (0, ax2) + v(x) x E T, 

where a = au2(P)/x2 and IIVII I T ? CCh21 U 12 x T. On the other hand, T12(P) 

T22( P) = 0 by the boundary conditions, so that div T = (aiT1 l/ax1, 0). Combining 
these observations it is easy to see that (3.13) is again valid. 

Now let T E Hh be arbitrary and let Tp, P E XD1, be such that Tp(P) = T(P) and 

Tp(P') 0 O for P' E 9DT, P' # P. Denote the support of Tp by Tp. Then, by (3.12) 
and (3.13), 

|(u -uf,divTs)|= |E(u-ul,divTsp) 
P eC-k 

< C/2 E IU13,TIITPIIO + Ch 2 I U I2,oo,TIITPII0 

Pzr Per 

1/2 {{1/2 
< C ICI h2 U ITIIO + Clh2 l UI1,o,TP IITIIO 

LPC~ J 19 PG9X 
Pzr Per 

< C2(h 21 U 13+ h3/21 U 12,)IITII 

which proves the assertion. D 

4. Method II. In this section we consider a class of methods based on (2.3), where 
the subspace Hh is defined in terms of a composite rectangular element described in 

[9]. Let K E Ch, and let K be subdivided into four triangles Ti as in Figure 3. 
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4 3 

T3 

14 

1 2 

FIGuRE 3 
Subdivision of K C Ch 

We introduce the spaces 

RK= {T E Y(K): T E [P1(T)]4, r n = on the diagonal 1-3 

andT O on K\T}, 

R'K= {T & Y(K): T E[ P1 (T')]4, r n' = O on the diagonal 2-4 

andT =0 onK\T' 

SK= Y(K) r4 [P1(K)]4 and GK = SKE RK GE R'K, 

where n and n' are normals to the diagonals 1-3 and 2-4, respectively, T = T1 U T2 

and T' = T1 U T4. 

Setting VK = [P1(K)]2 and HK = GK, K E Ch and defining the spaces Vh and Hh 

in (2.3) as 

(4.1a) Vh = {v E[L2(Q)]2: VIK E VK K E C} 

(4.1b) Hh= {T E H(Q): TIKEE HK KE }, 

we obtain the method analyzed in [9]. Here we have (see below) 

dim(Hh) = 11m1m2 + O(h'-), 

i.e., there are about 11 degrees of freedom per node in Hh. In what follows we 
consider methods where Vh and Hh are chosen as proper subspaces of those defined 
by (4.1). 

The first modification we consider is as follows. Let Vk be the space of rigid 
displacements on K, i.e., 

VK = {v(x) = (a, + a3x2, a2- a3x1), X E K, ai E R}. 

Further, let 

NK= {v E[PI(K)]2: J * wdx = OVv E VK} 

and 

(4.2) HK {T E GK: fdivT * v dx =0 Vv E NK} 

where GK is as above. With this new definition of VK and HK, define now Vh and Hh 

by (4.1). 
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To see how HK in (4.2) is constructed, we recall from [9] that any T E8 GK iS 

defined uniquely by the following 19 degrees of freedom: 
(i) the values of T * n at two points on each side of K, 

(ii) fKT,, dx, i,j= 1, 2. 
Let Q = (ql, q2) be the midpoint of K. Then if T E GK, we have T E HK if and only 
if 

(4.3) fdivT *vjdx = O, i, j = 1, 2, 

where v,J E NK are defined by 

v,,(x) = (xI -qI,O) 

vI2(x) = v2I(x) = 2(X2 - q2, X1 - q,), 

V22(x) = (0, x2 -q2), x E K. 

Applying (2.6) and noting that T * E(vlj) Tj, we see that (4.3) is equivalent to 

(4.4) jijdxf (T n) *v,jds, i,] 1,2. 

Thus, HK is constructed by eliminating from GK the inner degrees of freedom (ii) 
using (4.4). 

If HK is defined by (4.2), the inclusion HK D SK obviously remains valid, since 

JKdivT * v dx = 0 if v E NK and T E [PI(K )]4. Therefore the space HK has the same 
approximation properties as GK [9]: If a E Y(K) n [H2(K)]4 and a E HK is the 
interpolant of a, i.e., 6 * n = a * n at two points on each side of K, then 

(4.5) Ila - UIIO K S Ch2 Ia 12 K 

In the sequel we choose for the degrees of freedom of HK the limiting values of 
(T * n)(x) on each side of K as x approaches a vertex of K. Thus, there are eight 
degrees of freedom in Hh associated to each interior node. In order to further reduce 
the space Hh, we need some notation. For T E Hh and P an interior node, let Ap(T) 
be a 2 X 4 matrix with coefficients 

a 1 lim (T nj),, i= 1,2, j = 1,...,4, ij 
P'eI 

where lJ, j = 1,.. ., 4, denote the semi-infinite mesh lines starting at P, numbered as 
in Figure 4. 

2 X? 

3 4 4 x 

FIGURE 4 
Local numbering of mesh lines 

If P is located on F, we think the mesh to be extended outside S and set ai = 0, 
i= 1,2, if/ 1fn 2= 0. 

Let HP denote the subspace of Hh consisting of those functions that vanish at all 
nodes except at P. If P is an interior node, then dim(HP) 8, and we may choose 
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for the basis of H' the set {Tip, i = 1 .. ., 8} such that 

A P) = o O 0) A(I2P) = 
0 0 

0) 

~ ~), A(rfl=(~3-1 0 0) 

A(T3 ) = ( o 1 )' A(T4 ) 1 1 o 

A ( ) =( l 1 0 0 ) 0 

If P is a boundary node, we define Tp on Q as above. 
With the above notation, the space Hh can be defined as 

[ ~~~~8 
(4.6) Hh T a/PiP, ap e R, - n = O on F2}. 

We note that if a E H(2) is continuous and 6 C Hh is the interpolant of a defined 
by 

(4.7) Ap() =Ap(a), P E9 , 

then 

(4.8) d= [all(P)T1 + 022(P)T2p + G2(T3 )]- 
PC 

Thus, only the functions ip, i = 1, 2, 3, P F DT, are required in the interpolation. In 

particular, if a C H(2) n [H2(Q)]4 and if 6 is defined by (4.8), then (4.5) holds and 

so, by summing over K e Ch in (4.5), 

(4.9) 11 -allo 10 Ch2 112. 

From now on we denote by Hh I the subspace defined by (4.6) and by Hho0 the 

space 

f ~~~~3 
(4.10) h? = 2 aPT n = 0 on2t. 

L PC-Dh i= J 

We shall see below that with Hh = Hhl1 and Vh as above, we have the quasioptimal 
estimate 

(4.11) 11 - ahIlO ? Ch 1a12, 

where a and oh are solutions to (2.2) and (2.3), respectively. Our aim is now to 

construct smaller subspaces Hh, with Hho0 C Hh C Hh I, so that (4.1 1) still holds. 

Let us first formulate a stability criterion for the method (2.3), assuming that Vh is 

defined by (4.1a) and Hh,o C Hh C Hh l. We follow here the lines of Babuska [1] and 

Brezzi [5] (cf. also [2], [10]). Let T e H(K), K E Ch, and let v E Vh. Then, by (2.6) 
and since E(v) = 0 on K, 

fdivT vdx |(T n) * v ds. 
K A~~K 
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Summing this over all K & (2h, we obtain 

(4.12) (divT, v) f (T n) (v--v+ ) ds +f (T - n) * v ds, 
Fh r, 

T E H(2), v Vh, 

where Fh denotes the union of mesh lines in the interior of 02, n is a normal to Fh or 
an exterior normal to F and 

v (x) = lim v(x + ?n), x E ph. 

By (4.12), 

(4.13) I(divT, v) ITI O,hIVllh, I T F H(2), V Vh, 

where 

I Oh =hJ h nI 2ds, 

IVI ih-=hfIJ v+vIlds?+h-J IvIds. 
h h r, 

By the following lemma, the seminorms I *Io h and I 1'Ih are norms on Hh and Vh, 
respectively. 

LEMMA 4.1. There is a constant C such that for all T & Hh and v & Vh 

CHllTHl0 <ITIO,h < CIllT, 

and 

IV 1h 
C-liiviio, 

I lhalC-'(1 + I log h 
I)-1/1211V110'. 

* ? 

Proof. The equivalence of I O h and I 110 I on Hh follows easily from local scaling 
arguments (cf. also [2]), so let us only prove the lower bounds for I j 11 h. Let Ch be 
another rectangular subdivision of 2 such that the interior nodes in Ch are at the 
midpoints of each K e Ch. For v & Vh given, let v be a smoothening of v defined in 
terms of the bicubic Bogner-Fox-Schmidt element [6] as follows: For any K e 

Vi is a bicubic polynomial, and if P is a vertex of K E 0h, then 

v6(P) =v(P), aat3(P) a= v(P), i 1,2, 

a 2 a 2 

aa vP)= vxa vP). ax1ax2 aiX 

As is well known (cf. [6]), t3 is uniquely determined and t3 & H'(Q). Now if k e (h, 
it is easy to see that we can have 

-IV++-V-l2ds = O 
rnK 



414 J. PITKARANTA AND R. STENBERG 

if and only if Ie(t3)IIO , = 0, i.e., if and only if vik = fk is a rigid displacement on K. 
Therefore, by a scaling argument and by the equivalence of norms in a finite-dimen- 
sional space, there is a positive constant C independent of K such that 

h-f _V I VIV ds C||E(V3)||OK 
rnK 

Summing this over all K E Ch, we obtain 

h-If Iv+ -v12ds 
CIIc(i)iiO. 

rh 

Noting also that, by the construction of v3, Ijvjj 1 
2 

C//i3I12r, we obtain the 
inequality 

|IV 12, h > C(II__(1)II2 + 11,I12 r ) 

Further, since r, contains at least one side of 2, we have by Korn's inequality (cf. 
[71, [13]) 

l(vl0 + ll0 ri I Ilvl2 

We finally note that, by the construction of v3, llIllo a Cllvllo. Upon combining the 
last three inequalities, the first part of the assertion follows. 

For the second part of the assertion, we need the additional estimates 

(4.14) IIvII0,1OOs ClibII0o, 0 C,(1 + Ilog h1)",211 II. 

Combining (4.14) with the above inequalities, the proof is completed, so it remains 
to prove (4.14). 

The first inequality in (4.14) follows easily from the.construction of v3, so let us 
only prove the second part of (4.14). Let w be an extension of 1v to R2 such that w 
vanishes outside some disc S of finite radius and satisfies 

11IIIIH (R2)-- C || V|| l. 

Let x E 9T, x 4 80. Then v(x) may be written, by Green's formula, as 

v5(x) = 2 v(logIx-Y)- Vw(y) dy. 

Let Sh be a disc centered at x and of radius p = min{h1, h2}. Then Sh C a , and we 
have by a scaling argument 

-(log y x ) vw(y) dy S|IX _ Iyve(y)|dy 1 C|v1,Sh. 

Since, on the other hand, 

I v log(x-y) * vw(y) dyI 
S\Sh 

t f w2 dy tt wri Hi(R2) x< C( I + log h |) l 

it follows that, for x EC 6%,.x M 4 2, 
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Finally, if x E Q is arbitrary, we find by a scaling argument that I ev(x) I<, v(y) I + 
Cit3 IlKb where K E 0h is such that x E K and y is any vertex of K. Thus, (4.15) 
holds for any x E Q2, and so the proof is complete. D 

Using the above mesh-dependent norms, we can state a basic stability condition 
for method (2.3) as: There is a constant C such that 

(4.16) sup (divT, v) ab CIVIl v E Vh 
TEHh I T 10,h 

Note that, by Lemma 4.1, (4.16) is a stronger stability inequality than that proved 
for Method I (Lemma 3.1). 

Let us first prove 

LEMMA 4.2. If Hh = Hhl, then (4.16) holds with C = 1. D 

Proof. If Hh = Hhl,, the trace space {' r n: T Ee Hh) contains the trace space of Vh 
on fh U F,. Thus if v E Vh is given, there exists T E Hh such that T * n = v--v+ on 

Fh and T n = v on F1. Using (4.12) we see that (divT, v) =ITIOhIvlh, so the 
assertion follows. C] 

Remark. If one chooses Hh = Hho, it is easy to see that (4.16) can only be valid if 
C depends on h. In fact, it is not difficult to verify that, even if the space Vh is 
reduced to consist only of functions that are piecewise constant, (4.16) does not hold 
if Hh = Hho0. Note that such a method has essentially the same properties as Method 
I above. D 

Before showing examples where the stability assumption (4.16) holds with Hh # 
Hhl, let us prove an error estimate for the method (2.3) assuming merely that 
Hhl1 D Hh D Hho and that (4.16) holds. We need the following nonstandard inter- 
polant in Vh: if u E V, define ui E Vh by requiring 

(4.17) f(u-ui)divTdx =O, T E HK, K ECh, 
K 

where HK is defined as above. 

LEMMA 4.3. The interpolant ui is uniquely determined. Moreover, one has the 
estimates 

IIu-UIJo < ChJuJ1 and 1(U-U)(QK)I1 Ch2 I u 12,00,K9 K Eh, 

where QK is the midpoint of K. D 

ProoJf Let WK = {div T, T E GK), where GK is as in (4.2). In [9] it is shown that 
WK = rK([PI(K)]2), where rK denotes the orthogonal projection of [L2(K)]2 into 
the subspace consisting of functions v such that v1T is constant on each of the four 
subtriangles of K. By the definition of HK we then have 

{divT: T E_ HK} = 'gK(VK). 

Thus, we may set div X = 7rKU in (4.17) to obtain 

fU7TKUdx =f(' K K 7K Cdx 7K ai)2 dx=fU 7K a dx. 
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Using here the easy-to-prove inequality 

11LTKV11O K 3211V2lo,K v E VK 
we see that u satisfies IIC10K S 23IIUI1o0K. So, a is uniquely determined. Moreover, 
since u = u if u is constant, we conclude from the Bramble-Hilbert lemma [4] that 
IU- all0 K S ChI u I1,K. This proves the first inequality in the lemma. 

To prove the second inequality, note that if we write 

U(x) = (a,, a2) + a3(X2 - q2, -XI + -l) = aO(x) + au(x), x E K, 

where Q = (ql, q2) is the midpiont of K, then by (4.17) JK(u - ao) dx 0. Thus, ao 
is the L2-projection of u into [PO(K)]2. Since (u - u)(Q) = (u -2Io)(Q) = 0 if 
u E [PI(K )]2, we obtain from the Bramble-Hilbert lemma the estimate 

I (U - )(Q) 1< Ch2 uI 12>X K 
and the proof is complete. D 

We are now ready to state the main convergence result. 

THEOREM 4.1. Let (a, u) be the solution of (2.2), and let (oh, Uh) be the solution of 
(2.3), where Vh is defined by (4.1 a) and Hh D HhO is chosen so the stability condition 
(4.16) holds. Then we have the error estimates 

la( - UhllO < Ch2Iu12, 

~~~~ KFCC ( )12 Ch jh I|(U 
- Uh)( QK)I 1 h ( + I|log h| I (y12 + Ch U 12,,7 K KE , 

where QK is the midpoint of K. R 

Proof. Let 6 E Hh be defined by (4.7) (or equivalently by (4.8)), and let u E Vh be 
defined by (4.17). Then by (2.7) and (4.16) and since IT1, h ? CIITI I) forT F E 1h, by 
Lemma 4.1, we conclude by the standard argument (cf. [1],[5]) that there exists 
(T, v) E Hh X Vh satisfying 

(4.18a) IITlIo I IVII.h < C, 

(4.18b) 6'(Oh - U h T a, V) : lhah - UIIO( + I Uh - UII,h' 

where 'M is as in (3.2). Using (4.17) and (4.18b) in the identity (3.1), we obtain 

Hlah -|o + Uh u | h a < ( -6, T) I +I (div(u - a ), v) I 
Using (4.18a) and (4.9), we have 

I (C - 6, T) I < IIoI- 111ITI1o s Ch2 21 12 

Similarly using (4.13) and (4.18a), 

I (div(u - 6 ), v) I|I| - o 10hI Vh h S Cla- 6I0h S Clh 21a12 

Here the interpolation estimate in the norm I I 1o,h is proved by standard techniques; 
cf. [2] for details of the argument. 

Combining these estimates, using the triangle inequality and recalling (4.9), we 
obtain 

(4.19) II| - UhilO + IUh - aII,h < Ch2ICI2. 
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This proves the asserted estimate for Ia - hllo. Finally, by (4.19), Lemma 4.1 and 
Lemma 4.3, if QK is the midpoint of K E Ch, then 

I (U - Uh)(QK) 1:I (Uh 
- 

f)(QK) I +1 (U - 
)(QK) I 

s C(l + I log h l)I|uh - ull,h + Ch21 u 12oou K 

< Ch2(l + jloghI)"/2 la12 + Ch2IuI2,.,K 

which completes the proof. O 
In the remaining part of this section we consider the practical problem of 

constructing Hh so that the stability condition (4.16) holds. We first formulate a 
general criterion which is sufficient (and probably also necessary) for the validity of 
(4.16). Let &6h be a collection of "macroelements", i.e., a collection of open 
rectangles K such that if K E Ch and K E &h, then either K C K or K n K= 0. 

- 
h We associate to each K E Sh the following subspaces: 

(4.20a) U(K) = {Tk: T E Hh, T- 0 in Q\K}, 

(4.20b) N(K) = {vIk: v E Vh, |div T vdx 0 VT E U(K)}. 

Let us now assume that there exists an integer M a 1 independent of h such that 6 h 

satisfies the following hypotheses: 
(i) Each K E &h contains at most M different rectangles K E( Ch. 

(ii) If 1 is a side of K E Ch and / is not on F, then I is contained in at least one and 
not more than M different rectangles K EE h. 

(iii) For each k E h, N(K) ( 0 if AK nl F, # 0, otherwise N(K) is the space 
of rigid displacements of K, i.e., dim(N(K)) = 3. 

We can now prove 

LEMMA 4.4. If there is a collection &h which satisfies the above assumptions, then 
(4.16) holds. El 

Proof. For K E &hlet 

W(K) E{wIR WE V*f Vdx OVv E N(K)} 

and let 

I V 1I, h -f I - v?v 12 ds + h-f I 
v12 ds, v E Vh. 

nhfK FnaK 

It follows from assumption (iii) that I ll,h k is a norm on W(K). For, if v E W(K) 
and IVII hok = O, then v = O if K has a side on F,, and otherwise v is a rigid 
displacement of K. By assumption (iii), this implies that v E N(K), so v E W(K) n 
N( K), which is possible only if v = 0. 

On the other hand, if we define 

JkdivT . v dx 
I V Ih,R SUp ITIIok - '9 

T Cu(k)K 
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then I * Ih,K is another norm on W(K), by the definition of W(K). Using now a 
scaling argument and the equivalence of norms in a finite-dimensional space, 
recalling the assumption (i), we conclude the existence of a constant which depends 
only on M such that, for all v C W(K), 

(4.21) IV Ihka C IV l,h,,. 

Since I V Ih,K v IVh K 0h O if v C N(K), we further conclude that (4.21) actually 
holds for all v E Vhlk. In view of the definition of j Ih,R' this may be interpreted as: 
For each v E Vhik, there exists TK E U(K) such that 

(4.22a) 1ITkIlO "' 
CIVIIh,k, 

(4.22b) fdivrTk vdx IvI, h,k, 

where C depends only on M. 
Now let v F Vh be given, define TK F Hh for each K E 6h so that (4.22) holds and 

Tk = 0 on Qi\K, and let T E Hh be defined by 

T = 2 TK. 
kegh 

Then, by (4.22a) and by assumptions (i) and (ii), 

2 

lIT 112 ? T M I IITKIIO K 
Keh kre&h O kK R&h 

KDK 

?CM 2 I V 12 hK2CM2 I V 12h. 
he2h 

Here we also used the fact that if 1 is a side of K E eh on F,, then 1 is contained in 
AK for at most 2M different rectangles K E &h. This is a consequence of assumption 
(ii). From (ii) it also follows that each side of each K E Ch is contained in at least 
one k E &h if / is in the interior of 9 or in at least one AK if / C F. Therefore, and 
by (4.22b), 

(diVT, V) = divTk v dxa IV12* aj V12. 
kC&;h Kk-&;h 

Combining these inequalities, (4.16) follows. D 
We consider now two examples where the above hypotheses can be verified. 
Example 1. Let Hh be defined by 

6 3 ] 
Hh = 4 T = 2 a T, t + aIPT,' aip E R n = O on F2 

I PE' i= 1 PE91 i= I 
PEtr Pe &F 

where the functions Tip are as above. D 
Assume that mi, m2 a 3 in (2.5), and let 6 h be a collection of rectangles K such 

that assumption (ii) is satisfied for some finite M and such that each K E &h iS of 
the form 

K ={x E- : ih, < x, < (i + v1 )h,gjh2 < X2 < (j + v 2)h2}, 
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where vi = 3 if K has a side 1 on r parallel with the x,-axis and otherwise 
1 = p2 = 2. For such &h, assumption (i) holds with M 9, so it remains to verify 

(iii). 
Assume first that aK n F = 0. Then if T E Hh and T = 0 on K\S2, we have (see 

Figure 5) 
6 

(4.23) ~aiTi + a7(Tr - 7B) + a8({ + C) 
i=l1 

+ a9( 2D 
- 

D) + a10( 2E + 5E) a' i E- R. 

O A 
E >X1 

B 

FIGURE 5 

Hence if U(K) is defined by (4.20a) we have dim(U(K))= 10. If N(K) is now 
defined as in (4.20b), then v E N(K) if and only if 

fdiVT f vdx (T -n) (v+ -v-) ds = O 
K rh~nK 

for all T of the form (4.23). It is straightforward to verify that this is possible only if 
v+ = v- on "h, i.e., v is a rigid displacement of K. 

Assume next that K has a side on rF which contains the nodes A, B E 9 (see 
Figure 6). It follows from the above consideration that if v E N(K), then v can be at 
most a rigid displacement of K. But by (4.20) and by the definition of Hh we also 
have 

(4.24) JdivTi'-vdx=J (Tip - n) vds = 0, P =A, B,i= 1,2,3. 
K aKnP, 

It is easy to see that if v is a rigid displacement on K, then (4.24) implies that v = 0. 
Thus, assumption (iii) is verified and (4.16) now follows from Lemma 4.4. 

r 

A B 

FiGuRE 6 

Example 2. We assume here that m, and m2 in (2.5) are even numbers, with 

m1, m2 > 4. Denote by jh a coarser rectangular subdivision of Q2 such that each 
k E j h is of the type 

K = {x E 2: 2ih, < x, < 2(i + 1)hl, 2jh2 < x2 < 2(j + 1)h2} 
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for some i, j, 0 s i m1/2, 0 <] ? m2/2. Let OYZC, i - 0,... ,3, be subsets of the 
nodal set 9T such that DTho is the set of midpoints of K E Ch, 9Ti7 i = 1, 2, is the set 
of midpoints of the sides of K E Ch that are parallel with the xi-axis, and DT3 is the 
set of vertices of K E Ch. Then define Hh as 

3 

Hh T ts= a,T'i + E a,T'ti 
H PC-Y1 i=l PE&O i=4,6 

+ 2 a4PT4P + ar5T, ap E R, T- n O onJ'2{. D 

Note that 

dim(Hh) = 4mm2 + O(h-), 

so there are only about four degrees of freedom per node in this case. 
To verify assumptions (i) through (iii) for the above choice of Hh, let &h be a 

collection of rectangles K such that (ii) is satisfied for some finite M and such that 
each K E Sh is of the type 

K {x E Q: 2ih, < xl < (2i + 4)hl, 2jh2 <X2 < (2j + 4)h2}, 

where i, j - 0, (2i + 4)h I < a,, (2 j + 4)h2 < a2. Then assumption (i) holds with 
M= 16. 

To verify assumption (iii), consider first a given macroelement K which contains 
four rectangles of eh. With the notation of Figure 5, if T E Hh vanishes outside K, 
then 

4 

T aiTi + a5T6 + a6(TjB - 4B) + a(TC + T) 
i=l1 

+a8 (T2D -T5D) + a(T2 + 5E)' ai E R. 

We omit the details of showing that if v E Vh and Jk div TX- v dx 0 for all T of the 
above form, then v,k is a rigid displacment. 

Consider now a rectangle K E ch consisting of four subrectangles K1 as in Figure 
7, and let U( K) and N(K) be defined by (4.20). 

'K K 2 B 4 

iC E D 

l 1 A K3 

FIGURE 7 

We noted above that if v E N(K), then vik is a rigid displacement for i = 1,.. , 4. 
Therefore, if v E N(K), we may write 

(4.25) v(x)= h2a(1,+0)-+ h'pi(0,1)+IYi(X2 -q2i, qi -x), Th-ai(l,O) + h~-f3~(O, , 2hE i 1. 

xECK1, i =1,. ...,54, 
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where ai, Pig, yi E R and (qli, q2i) is the midpoint of Ki. Now, since Trj,- E U(K) for 
i = 1, 2,3 and P = A, B, C, D, E (see Figure 7), any v E N(K) satisfies, for exam- 
ple, 

fdiv Tip 
- V dx = 0 for P=C, D,' i-2,3, 

K~~~~~ ~~~ P= E, i= 1. 

With v given by (4.25), these equations are written equivalently as 

a(- a3 =0 

/1 -3 - l 1 -73 =0 

a2-X4 =0 

#2 - #4 - 72 - 74 = 

#1 -:2 =0 

a -a2 + y1 + 72 = 

/3 3-4 =0 

a3-(X4 + y3 + y4 0 

(1 -x2 -(X3 -(4 + 4(y I- - 3 + y4) = 0 

From this it is easy to see that the equations are all linearly independent. Thus, if 
aK nl F= 0, dim(N(K)) = 12 - 9 = 3, and so N(K) consists of the rigid dis- 

placements only. 
Finally if aK nl F # 0, one can further show that N(K) = {}0 using the same 

argument as in Example 1 above. Thus, assumption (iii) is verified, and so (4.16) 
follows. 

5. A Numerial Example. We give here the results of numerical computations using 
the methods presented in the preceding sections. We consider a simple model 
problem where 2 is the unit square, X = -0.3 and p = 1.3 in (2.1), andf = (fi, f2) is 
chosen so that the exact displacements under the boundary condition u = 0 on r are 

Ul = 16xl(l - XI)X2(1 -X2)e(x- 

u2 = sin 7TX I sin 7TX2, (xI , x2) E2. 

In solving the discrete equations, the following iterative version of the penalty 
method (2.4) is used (cf. [1 1, p. 321]) 

(5.1) a(h a kT) +- Th divh a k,7hT 

T (Thf, ThdivT) (uk 1,divT), H H, 

Uh Uh +-_Th(diV h +f) k 1,21.... 

Using u5o = 0 as the starting guess, we see that the first step in (5.1) is equivalent to 
the penalty method (2.3a, b'). 

The main benefit of using (5.1) instead of (2.3a, b') is that one has more freedom 
in choosing the parameter E. For, if the scheme (2.3a, b') is used, one has to take 
E = 0(h 2) in order to obtain the convergence rate I a-Ah I I0 = 0( h 2) (Cf. [10]). Thlis 
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makes the system (2.4) rather ill-conditioned (the condition number is of the order of 

h -4). Also, one has to compute 7Th f with high precision in (2.4) since the error is 

multiplied by 1/E. 

In practice the iteration (5.1) seems to converge quite fast: not more than six 

iterations were required in the computations. Since only one Cholesky decomposi- 

tion is required in (5.1), the additional cost due to iteration is relatively small. 

Table I shows the computed L2-errors 11 - hIlO in the above model problem. 
Method IIA corresponds to the choice Hh = Hhl,, in IIB Hh is chosen as in Example 
1 and in IIC as in Example 2 of Section 4. In parentheses is shown the relative 

number of operations required in the Cholesky reduction of the matrix in (5.1). 

Error 

o .oasor 

O.OZ5 / 

0.025 ~ 

0.00! 2 

1/16 1/12 1/8 h 

FIGURE 8 
L2-errors 1 -a hIlO in a model problem for Method I (+) and Method IIC (Z). Two line 

segments with slopes 3/2 and 2 are drawn for comparison. 

As shown in Figure 8, the rate of convergence is 0(h3/2) for Method I and O(h2) 

for Method II, as expected theoretically. Notice also that the constant in the error 

estimate is practically the same in the three variants of Method II. Thus, Method IIC 

should be preferred as it involves the least amount of computational work. As 

compared with Method I, Method IIC is superior roughly below the error level 

11 - hIIO -0.03. 
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TABLE I 

L2-errors II a- 10 lOfor various methods in a 

model problem. Numbers in parentheses indicate 
the relative cost of Cholesky reduction. 

Method II 
1/h Method I 

A B C 

4 0.123 (1.0) 0.090 (19) 0.101 (8.0) 0.102 (3.0) 
6 0.068 (5.1) 0.042 (97) 0.047 (41) 0.048 (17) 
8 0.045 (16) 0.024 (300) 0.026 (130) 0.027 (48) 

10 0.032 (39) 0.016 (740) 0.017 (310) 0.018 (120) 
12 0.025 (81) 0.011 (1500) 0.012 (650) 0.012 (240) 
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